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Hydrodynamic equations are presented for the viscous dispers ion sys tem on the basis  of the 
interaction between the homogeneous medium and the nonuniformities.  The equations have 
been confirmed via acoustic measurements .  

There has long been interes t  in the equations of hydrodynamics to be applied to dispers ion sys tems;  
in 1906, Einstein used hydrodynamic considerat ions to derive a relat ionship between the viscosi ty  of a 
colloidal solution and the concentrat ion of the d ispersed  phase [1]. However,  up till now there have been 
no suitable formulas  that take into account the viscosi ty  as a function of the part icle shape, size,  and inter-  
action. Here we give hydrodynamic equations for nonuniform media,  which enable one to take into account 
these proper t ies  of the d ispersed  mater ia l .  The equations have been tested by means of the acoustic d i s -  
pers ion in a two-phase sys tem consist ing of lycopodium plus an aqueous sodium chloride solution. 

The velocity was measured  by an in te r fe romet r ic  method [2]; the e r r o r  of measurement  was 1.2%. 
The absorption was measured  by a diffraction method [3]; the absorption coefficient was measured  in this 
way to 15%. The speed of ul trasound and the absorption were measured  over the range 4-30 mHz. 

Lycopodium powder was used to prepare  the mixture,  the par t ic les  being nearly spherical  in shape, 
and having a mean diameter  of 30 ~m. The par t ic les  were suspended in a solution of sodium chloride having 
a density equal to that of the par t ic les  (p = 1.07 g/cm3). 

Figure la  shows the velocity as a function of frequency for a 9% concentration; there is no dispers ion 
in the velocity within the e r r o r  of the measurements .  The absorption coefficient had a quadratic depen- 
dence on frequency only near  30 mHz. Figure lb shows the absorption coefficient as a function of frequency 
for concentrat ions of 26, 17, 9%. The resul t  is given as a ra t io  to the square of the frequency. 

To make the Figure c lear ,  the absorption values have been increased for go = 26% by 2000.10 -17 sec 2 
/ c m ,  the corresponding figure for go = 17% being 1000.10 -17, and that for go = 9% being reduced by 400.10  -17. 

It is c lear  that there is a resonant  effect; this follows directly f rom the theory of [4]. The broken 
line in Fig. lb shows the calculation f rom Kas te r in ' s  formula for a resona tor  model. In the calculations,  
the natural  frequency of the r e sona to r  was taken as 6.5 mHz, the pulsation amplitude of I0 -8 cm, and the 
quantity charac te r iz ing  the pulsation damping was taken as 0 .25 .10  -7 sec. The distance between the par t i -  
cles was calculated on the assumption that t h e y  form a cubic lattice. Kasterin considered that the d i s -  
placement  in the absorption band is determined by the distance between the par t ic les .  The above assump-  
tion about the disposition of the par t ic les  did not confirm the observed displacement for the band. The 
d iscrepancy is no doubt due to lack of accurate  information on the regular i ty  in part icle  disposition. To 
in terpre t  the resul ts  we can use another approach f rom the equations of hydrodynamics.  The main diffi- 
culty in writing the hydrodynamic equations for nonuniform medium is that the nonuniformity conflicts with 
the proper t ies  of a continuum. To avoid this conflict,  we have to establ ish a rat ional  method for replacing 
a substance with nonuniform physical  proper t ies  by one with uniform ones. Predvoditelev has proposed a 
possible method for the purpose,  and we use this here.  

To write the equations of hydrodynamics we need to know how the tangential viscosi ty var ies  when 
there is nonuniformity; F ins te in ' s  method is very laborious and is not very  c lear  as regards  the assump-  
tions and res t r ic t ions  involved. Predvoditelev calculated the viscosi ty on the following basis. The non- 
uniform medium is represented  as a sys tem of hydrodynamic dipoles; the velocity potential for such dipoles 
takes the form 
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Fig. 1. a) Speed (m/sec) of ultrasound; b) absorption 
as functions of frequency for lycopodium of aqueous 
NaCI of strengths (%): 1) 26; 2) 17; 3) 9. 

F - Q.. + Q , where R1 = V (xl - r) 2 + xg + x , ,  
Ri R2 

R~ = r (x~ + r) ~ + x~ + x~, 

where 2r is the length of a dipole and Q is  source  s trength.  Knowing the potential ,  we can calcula te  the 
veloci ty  W 0 = grad  F at any point in the med ium and the re fore  such quanti t ies  as 

3 3 

WO= Z \ OXl ] and 6~= Z \ Oxi ] , 
i = 1  i = l  

These  quanti t ies  a re  n e c e s s a r y  to calculate  the energy  that is t r a n s f o r m e d  into heat in the homogeneous 
liquid. The energy  loss  due to the Stokes r e s i s t ance  is  equal  to the products  of the frontal  r e s i s t a n c e  by 
the veloci ty  W 0 for  the flow of the uni form liquid, E s = 9~0W~o/rZ; here  ~o is par t ic le  concentra t ion and ~0 
is the v iscos i ty  of the uni form medium.  The following is the energy  loss  due to deformat ion  of the ve lo-  
city vec tor :  

E~ = 2~1o6o 2. 

The total  energy loss  can then be put as 

E = Es + E~ = 2~]~ ( l q- ~ ) " 2 r %  

In the l a t t e r  equation we have used W~ = 9 /2 .6~/S ,  and S is as follows for this veloci ty potential:  

~3 R~ Z 2 Z R~Re + _ _  4 + q (Ral - -  R~) a 2 a S 
1 q 3 R31 05il ~ il i2 

RIR2 R~ R2 E ' 

where q = R2--R1/RI31:I2,3 3 3 while a i i  and ai2 are  the di rect ion cos ines  of vec to r s  ' t l t  and R2. As Wo is r e la ted  
to the actual  veloci ty  of the nonuniform medium W by 

(1 - -  ~) Wo = W, 

we have 

1532 



1 +  ~P 
2r2S 

E = 2~la (1 - -  q~)2 5~' 

F r o m  the la t t e r  r e l a t i onsh ip  we find the v i s c o s i t y  of  the nonun i fo rm m e d i u m  as  

2r~S 
~1 (qg) = no . ( 1 )  .(1 - ~)~ 

F o r  sphe r i ca l  p a r t i c l e s ,  R 1 = R 2 = r ,  ozll = ozl2 = ~2/2, a21 = 322 = --~2/2, r2S = I and (1) b e c o m e s  E i n s t e i n ' s  
f o rmu la  [1]. 

The v i s c o s i t y  enab les  us to use  the o r d i n a r y  ru le  to wr i te  the s t r e s s  t e n s o r  and the equat ion  of  m o -  
t ion fo r  the nonun i fo rm liquid: 

, , n (q~) -p OWot gradp n- ~l(q~)hW ~ - - - ~ -  graddivW. (2) 

H e r e  ~ and ~ a r e  r e s p e c t i v e l y  the dens i ty  and p r e s s u r e  in the nonun i fo rm med ium.  

The c a l o r i c  equat ion of s tate  m a y  be put in gene ra l  f o r m  as  

~ = f (~) .  (3) 

The equat ion of cont inui ty  is wr i t t en  as  in f i l t ra t ion  theo ry  [5]. I f  the n u m b e r  of p a r t i c l e s  is una l t e red ,  this 
equat ion  t akes  the f o r m  

aPa (1 - -  tp) - - ~  4- div pa w = O, (4) 

where  O0 is the dens i ty  of the un i fo rm  medium.  Equa t ions  (2)-(4) a re  suff ic ient  to solve  the acous t i c  p r o -  
b l em.  We use  the a p p r o a c h  of  [6] to get  the absorp t ion  coef f ic ien t  as  

2rl (q~) o~ 2 
. . . .  ( 5 )  3gap 

where  ~ = ~ ,  co = 27rv is the f r equency  of  the u l t rasound .  

To b r i n g  the m e a s u r e d  r e s u l t s  into a c c o r d a n c e  with (5), we have to make  an a s sumpt ion  about the 
i n t e r ac t i on  of the wave f ront  with the nonun i fo rmi t i e s ,  which can be solved by the theory  of manifold  [7]. 

Cons ide r  pendu lum- type  mot ion  at any point  in an e l a s t i c  and liquid subs tance ;  if f r o m  that  point  
the re  p r o c e e d s  out a p e r t u r b a t i o n  in the f o r m  of a su r face  ~ (x, y ,  z,  t) = cons t ,  then the re  mus t  be a v e l o -  
c i ty  of this  p e r t u r b a t i o n  g~ = - - 0 ~ / 0 t .  1/H~.  Here  H~ is the f i r s t  d i f fe ren t ia l  p a r a m e t e r  of  the function ~, 
H~ = d~/dn.  We have g~ =--iw~/H~ for  a pe r tu rba t ion  of  pe r iod ic  c h a r a c t e r ,  and the equat ion for  the pendu-  
lum takes  the f o r m  

2 2 
�9 g ~ H ~  _ --m2 o + 2hmi . ~2 , (6) 

whe re  coo is the na t u r a l  f r equency  of  the pendulum osc i l l a t ion  and h is the damping  coeff ic ient .  

We a s s u m e  fu r t he r  that  in the med ium the re  is ano ther  su r f ace  r y,  z,  t) = C, which sa t i s f i e s  the 
wave equat ion with a p e r i o d i c  solut ion,  so co = ~ + i5, and then the wave equat ion can  be put in the f o r m  

g~A~ + (% + i6)~, = 0 (7) 

The s ta te  of  the mani fo ld  is c h a r a c t e r i z e d  by the two s u r f a c e s  8 and r The r e l a t i onsh ip  is given by G r e e n ' s  
f o r m u l a  

~ d, dnd-~-~ dax4-~ ~A*dax= ;~ -~dS .  

If  we a s s u m e  g~ = g~ = g, then (6) and (7) go with 

(. 
T2n k ~ 2  / dax = - J g*dax (8) J 

to  give us G r e e n ' s  f o rm u l a  
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S de dS 
~ ~* dax = (9) g-~ (%2 _ ~ + 5~) _ 2 (h + 5) ~ i  �9 

It is readily seen that (8) applies if the gradient of the product of ~ is zero.  

We calculate the integrals  of (9) for a manifold represent ing  a medium filled with par t ic les .  We as -  
sume that the medium ca r r i e s  an acoustic wave, whose potential is ~' = ~ + r where ~0 is the velocity 
potential in the uniform medium and ~ is the potential ar is ing f rom the nonuniformities.  We put ~ = ~, 
W = dr the integral  over the surface is t ransformed into a volume integral ,  and we use the following 
re lationships: 

5 p  _ _  a~ , a~  _ _  ioi~ ' O__pp ir 
Po Ot Ot at 

Then formula (9) becomes 

n 2 =  1 § (co~- -r  ) + 2 ( h § 1 6 2  ' 

Where n 2 = g~/~2 is the complex refract ive  index. The absorption coefficient a of the nonuniform medium is 

(h + a)~o~ 
= - (lO) gn 2 [(c002 - -  co~ § 52) 2 + 4 (h + 5) ~ ~0~ 

The latter formula has been derived f rom purely kinematic consideration.  We can compare (10) with 
(5), which is derived f rom the equations of hydrodynamics ,  which enables us to determine the mode of flow 
around the nonuniformities.  If we put 6 =0, 2~0~0/[3~3(1--9) 2] = h/g'n2f 2, then with the form factor r2S we get 

1 1 ~2f2 
- + - + 

H e r e  r2S0 is the form charac te r  charac te r iz ing  the flow around the nonuniformities outside the resonance 
r e  g ion .  

The solid line in Fig. lb  has been constructed f rom (5). The form factor was calculated f rom (11). 
The calculations were per formed for 

v 0 =  6.5.106 1 I -- 1701 h 2.56- l0 s 1 ,[=1.4.10 s 1 
sec ~ 2r~So sec see 

The absorption curves  for the other concentrat ions were calculated on the assumption that the form factor 
increases  l inearly with the concentration. Figure 1 shows that (5) decr ibes  sat isfactor i ly  the frequency 
and concentration relat ionships for the absorption coefficient. 

F r o m  these resuI t s  one concludes that one can use Predvodi te lev ' s  general ized hydrodynamic equa- 
tions to descr ibe nonuniform medium. In these equations the viscosi ty  of the nonuniform sys tem is de te r -  
mined via Newton's differential equation. The viscosi ty  formula contains the form factor ,  which may dif- 
fer between instruments  for measur ing viscosi ty ,  which shows that one can determine the viscosi ty  by 
me arts of Newton' s equation without re  sort  to Bingham' s equation [8]. 
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