THE VISCOSITY OF A DISPERSION SYSTEM
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Hydrodynamic equations are presented for the viscous dispersion system on the basis of the
interaction between the homogeneous medium and the nonuniformities, The equations have
been confirmed via acoustic measurements,

There has long been interest in the equations of hydrodynamics to be applied to dispersion systems;
in 1906, Finstein used hydrodynamic considerations to derive a relationship between the viscosity of a
colloidal solution and the concentration of the dispersed phase [1]. However, up till now there have been
no suitable formulas that take into account the viscosity as a function of the particle shape, size, and inter-
action, Here we give hydrodynamic equations for nonuniform media, which enable one to take into account
these properties of the dispersed material, The equations have been tested by means of the acoustic dis~
persion in a two~-phase system consisting of lycopodium plus an aqueous sodium chloride solution,

The velocity was measured by an interferometric method [2]; the error of measurement was 1.2%.
The absorption was measured by a diffraction method [3]; the absorption coefficient was measured in this
way to 15%. The speed of ultrasound and the absorption were measured over the range 4-30 mHz,

ILycopodium powder was used to prepare the mixture, the particles being nearly spherical in shape,
and having a mean diameter of 30 pym. The particles were suspended in a solution of sodium chloride having
a density equal to that of the partictes (o = 1.07 g/cm?),

Figure la shows the velocity as a function of frequency for a 9% concentration; there is no dispersion
in the velocity within the error of the measurements. The absorption coefficient had a quadratic depen-
dence on frequency only near 30 mHz. Figure 1b shows the absorption coefficient as a function of frequency
for concentrations of 26, 17, 9%. The result is given as a ratio to the square of the frequency.

To make the Figure clear, the absorption values have been increased for ¢ = 26% by 2000 - 1017 sec?
/cm, the corresponding figure for ¢ = 17% being 1000-10~!", and that for ¢ = 9% being reduced by 400-10~7.

It is clear that there is a resonant effect; this follows directly from the theory of [4]. The broken
line in Fig. 1b shows the calculation from Kasterin's formula for a resonator model., In the calculations,
the natural frequency of the resonator was taken as 6.5 mHz, the pulsation amplitude of 10~% ¢m, and the
quantity characterizing the pulsation damping was taken as 0.25-107" sec. The distance between the parti-
cles was calculated on the assumption that they form a cubic lattice., Kasterin considered that the dis-
placement in the absorption band is determined by the distance between the particles. The above assump-
tion about the disposition of the particles did not confirm the observed displacement for the band. The
discrepancy is no doubt due to lack of accurate information on the regularity in particle disposgition. To
interpret the results we can use another approach from the equations of hydrodynamics. The main diffi-
culty in writing the hydrodynamic equations for nonuniform medium is that the nonuniformity conflicts with
the properties of a continuum. To avoid this conflict, we have to establish a rational method for replacing
a substance with nonuniform physical properties by one with uniform ones. Predvoditelev has proposed a
possible method for the purpose, and we use this here.

To write the equations of hydrodynamics we need to know how the tangential viscosity varies when
there is nonuniformity; Finstein's method is very laborious and is not very clear as regards the assump-
tions and restrictions involved. Predvoditelev calculated the viscosity on the following basis. The non-

uniform medium is represented as a system of hydrodynamic dipoles; the velocity potential for such dipoles
takes the form
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Fig. 1. a) Speed (m/sec) of ultrasound; b) absorption
as functions of frequency for 1ycopodium of aqueous
NaCl of strengths (%): 1) 26; 2) 17; 3) 9.

F Z_E_ _\_%, where R, =V (x,—7) + 22 + x5,

Ry=V (x 7P + x5 + 4,

where 2r is the length of a dipole and Q is source strength. Knowing the potential, we can calculate the
velocity W, = grad F at any point in the medium and therefore such quantities as
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These quantities are necessary to calculate the energy that is transformed into heat in the homogeneous
liquid. The energy loss due to the Stokes resistance is equal to the products of the frontal resistance by
the velocity W, for the flow of the uniform liquid, Eg = 9m,W2p/r% here ¢ is particle concentration and 7,
is the viscosity of the uniform medium. The following is the energy loss due to deformation of the velo-
city vector:

Ey = 21,5.

The total energy loss can then be put as

E—FE +E =om&[1+-3_1.
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In the latter equation we have used W% =9/2. ég/s, and S is as follows for this velocity potential:
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where q = R3—R{/R{R3, while oy, and o, are the direction cosines of vectors Ry and R,. As W, is related
to the actual veloeity of the nonuniform medium W by

(I —0g) W, =W,

we have
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From the latter relationship we find the viscosity of the nonuniform medium as
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For spherical particles, Ry = Ry =T, 04y = gy =V2/2, Qy =gy = —2/2, TS = 1 and (1) becomes Einstein's
formula [1].

The viscosity enables us to use the ordinary rule to write the stress tensor and the equation of mo-
tion for the nonuniform liquid:

— OW -
P = —gradp +n(g) AW -

n() grad div W, (2)

3

Here p and p are respectively the density and pressure in the nonuniform medium.

The caloric equation of state may be put in general form as
p=f) (3)
The equation of continuity is written as in filtration theory [5], If the number of particles is unaltered, this
equation takes the form

9 .
(1—@)%—+dlvp0wzo, ()

where p, is the density of the uniform medium. Equations (2)-(4) are sufficient to solve the acoustic pro-
blem. We use the approach of [6] to get the absorption coefficient as

2 ®?
Q= _ﬂ(}})—_ , (5)
3g°p
where § =vdp/d5, w = 27v is the frequency of the ultrasound.

To bring the measured results into accordance with (5), we have to make an assumption about the
interaction of the wave front with the nonuniformities, which can be solved by the theory of manifold [7].

Consider pendulum-type motion at any point in an elastic and liquid substance; if from that point
there proceeds out a perturbation in the form of a surface ¢(x, y, 2z, t) = const, then there must be a velo-
city of this perturbation g¢ = —9£/0t- 1/H§. Here Hg is the first differential parameter of the function £,
HE =d¢{/dn. We have g, = —iwt /HE for a perturbation of periodic character, and the equation for the pendu-
lum takes the form

2772
. g
— 0 + 2ot = —E55- 6)

where w; is the natural frequency of the pendulum oscillation and h is the damping coefficient.

We assume further that in the medium there is another surface ¢¥(x, y, z, t) = C, which satisfies the
wave equation with aperiodic solution, so w = wy + 16, and then the wave equation can be put in the form

AP + (0, + 6 = 0. (7)
The state of the manifold is characterized by the two surfaces £ and ¢. The relationship is given by Green's

formula
dp . dg 3, 1 3 dp S
S dn dn | fg S‘E dn .

If we assume g; = g, = g, then (6) and (7) go with

dy [ dg \-!
jﬁﬁ(fg) dx = — j Spdx ®)

to give us Green's formula

1533



j&d—wds
-gid%c: dn .
pz @ = + &) — 27 + 0) oy

(9

It is readily seen that (8) applies if the gradient of the product of £¢ is zero.

We caleulate the integrals of (9) for a manifold representing a medium filled with particles. We as-
sume that the medium carries an acoustic wave, whose potential is §' = ¢ + 3§, where ¥, is the velocity
potential in the uniform medium and ¢ is the potential arising from the nonuniformities. We put £ = g,

W = dy/dn; the integral over the surface is transformed into a volume integral, and we use the following
relationships:

&p ap o . dp .
= e = 1w, ——=lﬁ)§p.
0 ot ot S '
Then formula (9) becomes
mz
nt =1+ !

(0 —?+ ) - 2(h+ ) o
where n? = g%/ g’ is the complex refractive index. The absorption coefficient & of the nonuniform medium is

( + O ot
&= = 2 ) oong 2 2 (10)
an [((00—(,01 —1-6) +4(h -+ (S) [ON]
The latter formula has been derived from purely kinematic consideration. We can compare (10) with
(5), which is derived from the equations of hydrodynamics, which enables us to determine the mode of flow
around the nonuniformities. If we put 6 =0, 2n,0/[358°(1—¢)¥ = h/gn’?, then with the form factor r’S we get
11 vef?

28 2, T — V) - 4R

Here 128 is the form character characterizing the flow around the nonuniformities outside the resonance
region.

The solid line in Fig. 1b has been constructed from (5). The form factor was calculated from (11).
The calculations were performed for

vy = 65.100 —— L 170, h=256.100 - ,f=14.108 — .
sec

sec | 27%S, sec

The absorption curves for the other concentrations were calculated on the assumption that the form factor
increases linearly with the concentration, Figure 1 shows that (5) decribes satisfactorily the frequency
and concentration relationships for the absorption coefficient.

From these results one concludes that one can use Predvoditelev's generalized hydrodynamic equa-
tions to describe nonuniform medium. In these equations the viscosity of the nonuniform system is deter-
mined via Newton's differential equation. The viscosity formula contains the form factor, which may dif-
fer between instruments for measuring viscosity, which shows that one can determine the viscosity by
means of Newton's equation without resort to Bingham's equation [8].
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